The expanded amelogenin polyproline region preferentially binds to apatite versus carbonate and promotes apatite crystal elongation
نویسندگان
چکیده
The transition from invertebrate calcium carbonate-based calcite and aragonite exo- and endoskeletons to the calcium phosphate-based vertebrate backbones and jaws composed of microscopic hydroxyapatite crystals is one of the great revolutions in the evolution of terrestrial organisms. To identify potential factors that might have played a role in such a transition, three key domains of the vertebrate tooth enamel protein amelogenin were probed for calcium mineral/protein interactions and their ability to promote calcium phosphate and calcium carbonate crystal growth. Under calcium phosphate crystal growth conditions, only the carboxy-terminus augmented polyproline repeat peptide, but not the N-terminal peptide nor the polyproline repeat peptide alone, promoted the formation of thin and parallel crystallites resembling those of bone and initial enamel. In contrast, under calcium carbonate crystal growth conditions, all three amelogenin-derived polypeptides caused calcium carbonate to form fused crystalline conglomerates. When examined for long-term crystal growth, polyproline repeat peptides of increasing length promoted the growth of shorter calcium carbonate crystals with broader basis, contrary to the positive correlation between polyproline repeat element length and apatite mineralization published earlier. To determine whether the positive correlation between polyproline repeat element length and apatite crystal growth versus the inverse correlation between polyproline repeat length and calcium carbonate crystal growth were related to the binding affinity of the polyproline domain to either apatite or carbonate, a parallel series of calcium carbonate and calcium phosphate/apatite protein binding studies was conducted. These studies demonstrated a remarkable binding affinity between the augmented amelogenin polyproline repeat region and calcium phosphates, and almost no binding to calcium carbonates. In contrast, the amelogenin N-terminus bound to both carbonate and apatite, but preferentially to calcium carbonate. Together, these studies highlight the specific binding affinity of the augmented amelogenin polyproline repeat region to calcium phosphates versus calcium carbonate, and its unique role in the growth of thin apatite crystals as they occur in vertebrate biominerals. Our data suggest that the rise of apatite-based biominerals in vertebrates might have been facilitated by a rapid evolution of specialized polyproline repeat proteins flanked by a charged domain, resulting in apatite crystals with reduced width, increased length, and tailored biomechanical properties.
منابع مشابه
Amelogenin: a Protein to Smile About
How did we humans (and other vertebrates) get our sparkling smiles? The hard white coating on our teeth, the enamel, is made up of hydroxyapatite—the same mineral that forms our bones. In our teeth, hydroxyapatite is organized into parallel arrays of columnar apatite crystals called prisms. The growth and organization of enamel prisms is controlled by special proteins secreted by cells known as...
متن کاملElongated Polyproline Motifs Facilitate Enamel Evolution through Matrix Subunit Compaction
Vertebrate body designs rely on hydroxyapatite as the principal mineral component of relatively light-weight, articulated endoskeletons and sophisticated tooth-bearing jaws, facilitating rapid movement and efficient predation. Biological mineralization and skeletal growth are frequently accomplished through proteins containing polyproline repeat elements. Through their well-defined yet mobile a...
متن کاملModification of calcium-phosphate coatings on titanium by recombinant amelogenin.
Amelogenin proteins, the principal components of the developing dental enamel extracellular matrix, have been postulated to facilitate the elongated and oriented growth of the carbonated apatite crystals during enamel formation. We previously reported that amelogenin caused modulation of apatite crystals nucleated on a bioactive glass (Bioglass(R)) in vitro. Here, the effects of amelogenin on t...
متن کاملNew Proposal for Co3 Position in B-type Carbonated Apatite
The crystal structure of two B-type carbonated apatite samples was re-analyzed, using the data of Wilson et al (2006). By applying the least squares method for the determination of carbon and oxygen atoms, a slightly different result was obtained, suggesting that the carbonate ion is not rigorously planar. Keywords Carbonated apatite, Carbonate, Xray diffraction.
متن کاملFabrication of carbonate apatite block based on internal dissolution-precipitation reaction of dicalcium phosphate and calcium carbonate.
In this study, we investigated a novel method for fabrication of carbonate apatite block without ionic movement between precursor and solution by using precursor that includes all constituent ions of carbonate apatite. A powder mixture prepared from dicalcium phosphate anhydrous and calcite at appropriate Ca/P ratios (1.5, 1.67, and 1.8) was used as starting material. For preparation of specime...
متن کامل